Chernobyl, Fukushima, radiation — Oh my!

  1. I get it.
  2. How bad is radiation anyway?
  3. How ‘hot’ is Chernobyl?
  4. What about Fukushima?
  5. Evacuation stress has killed more than the radiation would have!
  6. They’re resettling the 20 mSv zones
  7. What about the natural radiation at RAMSAR!?

1. I get it.

Like you, I used to be suspicious of nuclear power. I mean, anything that can evacuate a town for centuries has got to be bad, right? But recently I learned that government policies around Chernobyl and Fukushima have been too strict. Other than a short evacuation of a few months after a nuclear accident, there’s no significant reason society should abandon the whole area. In that way they’re about as bad as an Australian bushfire, except you don’t have to rebuild all the houses! Radiation at Fukushima and Chernobyl is just not that high. But first we need to look at the numbers.

2. How bad is radiation anyway?

Before we look at the numbers, let’s remember that if it wasn’t for uranium and thorium, life on earth would not exist. They keep the earth’s core hot and spinning which powers the magnetic field that protects the atmosphere from being blown away! If you ever wished uranium did not exist, you just wished away life on earth. Natural uranium breaks down into radon gas that leaks out of the ground and gently irradiates us: just a little. This happens without human interference. This is called natural background radiation and it is all around us.

Because there are 3 types of radiation (alpha, beta and gamma) and they hit the body in different ways, scientists have broken down the effect of radiation on the body into an equivalent unit called Sieverts.

  • A Sievert is dangerous
  • 8 Sieverts will kill you
  • But milliSieverts are used to measure medical procedures that can save your life, and are also used to describe the natural background radiation in units per annum. The average natural dose is 2.4 mSv per year
  •  MicroSieverts (μSv, or millionths of a Sievert) measure daily exposure levels.
  • How much radiation is too much? A handy guide.
  • Charles Sturt University says that around the world some rare places have 50 milli-Sieverts (50 mSv) a year of natural radiation, with barely discernible health impacts.
  • 50 mSv per year. Remember that number.
  • This means that areas hit by radiation 25 times higher than the average natural background radiation are still relatively harmless.

3. So how ‘hot’ is Chernobyl?

But the World Health Organisation (WHO) explains that Chernobyl’s 270,000 residents that stayed within the SCZ (Strictly Controlled Zones) only received 50 mSv over 20 years! That’s only 2.5 mSv a year! In other words, there are places that are naturally 20 times hotter than Chernobyl!

So why did they evacuate Chernobyl? Worldwide, government policy about radiation has been influenced by a few suspicious papers decades ago that simply assumed there was no safe lower level of radiation. It’s an assumption extrapolated mathematically down to very low levels of radiation that is often not verified by empirical science. It’s called the Linear No Threshold model and just assumes there is no safe lower level. Many scientific academies now question whether this old mathematical model survives modern scientific observation. (See my LNT page). But because of some scientific power plays back in the day, it’s the model that informs government policy. It is behind the ‘guesstimate’ that the 1986 Chernobyl disaster will eventually kill 4,000 people.

The risk projections suggest that by now [2006] Chernobyl may have caused about 1000 cases of thyroid cancer and 4000 cases of other cancers in Europe, representing about 0.01% of all incident cancers since the accident. Models predict that by 2065 about 16,000 cases of thyroid cancer and 25,000 cases of other cancers may be expected due to radiation from the accident, whereas several hundred million cancer cases are expected from other causes.

Cardis, Elisabeth; Krewski, Daniel; Boniol, Mathieu; Drozdovitch, Vladimir; Darby, Sarah C.; Gilbert, Ethel S.; Akiba, Suminori; Benichou, Jacques; Ferlay, Jacques; Gandini, Sara; Hill, Catherine; Howe, Geoffrey; Kesminiene, Ausrele; Moser, Mirjana; Sanchez, Marie; Storm, Hans; Voisin, Laurent; Boyle, Peter (2006). “Estimates of the cancer burden in Europe from radioactive fallout from the Chernobyl accident”. International Journal of Cancer. 119 (6): 1224–1235. doi:10.1002/ijc.22037. PMID 16628547.

The actual results may be far lower. The United Nations Scientific Committee on the Effects of Atomic Radiation says:-

The accident at the Chernobyl nuclear power plant in 1986 was a tragic event for its victims, and those most affected suffered major hardship. Some of the people who dealt with the emergency lost their lives. Although those exposed as children and the emergency and recovery workers are at increased risk of radiation-induced effects, the vast majority of the population need not live in fear of serious health consequences due to the radiation from the Chernobyl accident. For the most part, they were exposed to radiation levels comparable to or a few times higher than annual levels of natural background, and future exposures continue to slowly diminish as the radionuclides decay. Lives have been seriously disrupted by the Chernobyl accident, but from the radiological point of view, generally positive prospects for the future health of most individuals should prevail.

In comparison, coal kills 2.7 million people a year, or nearly 52,000 people a week! Even by the over-conservative ‘no safe limit’ model, coal kills about 2 Chernobyls every day! But that’s based on the LNT. It turns out the 1,200 ‘babushka’s of Chernobyl’ who returned to live there shorty after being evacuated are outliving those who left! It seems evacuation stress is worse than radiation.

The BBC echoes this view in a piece titled “We should stop running away from radiation.” (March 2011)

And Chernobyl? The latest UN report published on 28 February confirms the known death toll – 28 fatalities among emergency workers, plus 15 fatal cases of child thyroid cancer – which would have been avoided if iodine tablets had been taken (as they have now in Japan). And in each case the numbers are minute compared with the 3,800 at Bhopal in 1984, who died as a result of a leak of chemicals from the Union Carbide pesticide plant….

… A map of Chernobyl in the UN report shows regions shaded according to rate, up to 3,700 kBq per sq m – areas with less than 37 kBq per sq m are not shaded at all. In round terms, this suggests that the radioactive fallout at Fukushima is less than 1% of that at Chernobyl.

The side effects on nature are interesting. Evacuating the Chernobyl area has created  an unintended wildlife sanctuary where nature is thriving. It appears nature can endure the presence of a little extra radiation far better than it can if we were there! Studies show biological systems are not perfect in the hottest zones of the ‘red forest’ which should be quarantined. However, Ukraine plans to leave the majority of Chernobyl abandoned for another 200 years, when in reality they could fence of certain regions and move back into the area.

4. What about Fukushima?

So what about Fukushima? As The Financial Times says in Fukushima nuclear disaster: did the evacuation raise the death toll?” (Marsh 2018)

The result that did not materialise was sickness from radiation. “At present, there are no cases of cancer relating to radiation, and that includes workers at the plant,” says Dr Tanigawa. Among 173 workers exposed to radiation above occupational safety limits, there may eventually be a handful of incidents of cancer, he says. But the maximum dose to Fukushima residents was below those levels. “Statistically speaking, there should be no detectable increase in cancer in the general public.” Anti-nuclear campaigners point to more than 100 diagnoses of thyroid cancer in Fukushima children. But doctors say radiation cannot be the cause, since the disease typically takes four or five years to develop after exposure, and the cancers were found immediately. Rather, the thyroid cases were a result of screening every child in the prefecture using ultrasensitive equipment. Detection rates in Fukushima were similar to those found using the same equipment in other Japanese prefectures. “If we go looking for thyroid cancer then we’ll find it through a screening effect,” Dr Tanigawa says.

Avoiding deaths from radiation was the whole point of the evacuation. The crucial question is how sick people would have been had they stayed. Prof Thomas has published calculations using UN radiation data from Fukushima and standard models of how it translates to disease. He found modest risks. “The sort of dose for even the worst-affected villages was something that was accepted in the nuclear industry 30 years ago,” he says. In the worst-affected towns of Tomioka, Okuma and Futaba he found that evacuees extended their lives by an average of 82, 69 and 49 days respectively, thanks to the radiation they avoided. In Mr Yamauchi’s hometown of Naraha, the decrease in lifespan avoided through evacuation was just a couple of days. In a few places, the figure was negative because people evacuated to areas with higher levels of radiation. Evacuation makes relatively greater sense for the young, who are more sensitive to radiation, and have more length of life to lose.

But purely based on an economic calculation of cost and benefit, the evacuation was not worth it, says Prof Thomas. The expected compensation bill to evacuees is ¥7.9tn ($74bn). Add in the terrible health consequences of disrupting lives “and it becomes many more times not worth doing”. The lifetime risk of death from a 100 millisievert dose of radiation — more than any resident actually received — is about 0.5 per cent.

The The Breakthrough Institute says:-

Let’s crunch the numbers. UNSCEAR estimated the average radiation doses that would have been incurred inside the 20-kilometer evacuation zone in the first year after the accident, had there been no evacuation: the highest was Tomioka township’s 51 millisieverts.8 The Committee also reckoned that 80-year lifetime doses in contaminated areas will be two to three times the first-year dose. (Radiation levels drop quickly because of radioactive decay and weathering.)9From there we can reckon the dose people would have received from fallout had they lived their whole lives in the evacuation zone: about 100-150 mSv in the most contaminated townships, substantially less elsewhere in the zone. Natural background radiation in the United States averages about 2.4 mSv per year, so 150 mSv is about equal to the lifetime background dose of a typical American.

Others estimate about 20 mSv / year. Either way, it’s lower than Charles Sturt’s natural hot spots at 50 mSv / year!  Indeed, The Breakthrough Institute says that thyroid cancer rates are lower in Fukushima children than other areas, the seafood is safe to eat, the evacuation zone is mostly habitable, and the Fukushima death toll will be too small to measure.

The Financial Times reports:

There were 2,202 disaster-related deaths in Fukushima, according to the government’s Reconstruction Agency, from evacuation stress, interruption to medical care and suicide; so far, there has not been a single case of cancer linked to radiation from the plant. That is prompting a shocking reassessment among some scholars: that the evacuation was an error. The human cost would have been far smaller had people stayed where they were, they argue. The wider death toll from the quake was 15,895, according to the National Police Agency.

5. Evacuation stress has killed more than the radiation would have!

The Breakthrough March 2015 continues…

The mandatory relocations from the Fukushima evacuation zone, which are responsible for much of the accident’s cost and all of its cataclysm, owe more to apocalyptic expectations built into regulatory standards than to objective health hazards from fallout. Those hazards are well within the range of risks we negotiate in ordinary life. It might be time to reconsider policies that require precipitate or long-term relocations, which carry their own risks. Hundreds of people died from the stress of the Fukushima evacuation, and thousands more were uprooted from their homes over radiation doses that would almost certainly never affect their health. Instead of requiring people to leave, it could make more sense to give them the information they need on radiation exposures and likely health risks, and let them make their own decisions.
The Breakthrough March 2015

6. They’re resettling the 20 mSv zones

Authorities should go in an fence of the areas around the reactor that really are quite ‘hot’, and then let the whole region be rebuilt. But at least they are returning them to areas below 20mSv a year. But they are still locking up the 50mSy zones.

7. What about the natural radiation at RAMSAR!?

Why haven’t you asked about Ramsar? What terrible nuclear accident happened there? Well, are you in for a mind-bending bit of data. It’s a massive government cover-up involving corporations that don’t want a terrible nuclear accident reported……. ok. I’m being sarcastic.

Ramsar’s radiation is natural. It still comes from uranium decaying in the environment, decaying into radon gas that we can breathe. But because it’s natural, no one has been able to spin a conspiracy theory around covering it up. Dr Helen’s tinfoil Hat brigade cannot rant against nature, can they? Remember Chernobyl’s SCZ was 2.5 mSv / annum, and Fukushima’s between normal 2.5 to 20 mSv /a. So what’s Ramsar got?

The highest background radiation in an inhabited area is found in Ramsar, primarily due to the use of local naturally radioactive limestone as a building material. The 1000 most exposed residents receive an average external effective radiation dose of 6 mSv per year, (0.6 rem/yr,) six times the ICRP recommended limit for exposure to the public from artificial sources.[23] They additionally receive a substantial internal dose from radon. Record radiation levels were found in a house where the effective dose due to ambient radiation fields was 131 mSv/a, (13.1 rem/yr) and the internal committed dose from radon was 72 mSv/a (7.2 rem/yr).[23] This unique case is over 80 times higher than the world average natural human exposure to radiation.

Epidemiological studies are underway to identify health effects associated with the high radiation levels in Ramsar. It is much too early to draw statistically significant conclusions.[23] While so far support for beneficial effects of chronic radiation (like longer lifespan) has not been observed, a protective and adaptive effect is suggested by at least one study whose authors nonetheless caution that data from Ramsar are not yet sufficiently strong to relax existing regulatory dose limits.[24]   From the Background radiation wiki 

If Helen’s tinfoil hat brigade cannot explain why these people are not dropping like flies, she should publicly retract all her anti-science books and stop making a fool of herself!

3 Responses to Chernobyl, Fukushima, radiation — Oh my!

  1. Rigby says:

    The point is, the radiation doesn’t go away, it remains for centuries and builds up to lethal limits in plants and animals Are you saying Madame Curie didn’t get her cancers from the radiation? As for Ramsar, over the years those who couldn’t tolerate the high levels died off, leaving the more tolerant ones. In Arnhem Land there are areas designated by the locals as unlivable, because people who lived there got sick. They are where uranium is close to the surface. It’s a bit like pesticides, a little doesn’t hurt, we are told, but it accumulates in bodies until it does have bad effects, like UV radiation, sugar…you can get away with taking poisons into the body for a while, but eventually you pay for it. But even on economic grounds nuclear energy is crazy, compared with using sunlight and wind and waves it’s outrageously expensive and takes ten years to set up. the generators are hellishly expensive, on-going maintenance is even more expensive, the plants only last a few decades and de-commissioning is hellishly expensive and nuclear waste dumps are very dangerous, despite your article. Of course the oil industry wants nuclear, because that gives them another decade at least of oil profits, whereas a solar array giving base load power can be set up in a matter of months at a thousandth the cost and requires little maintenance. It’s a dangerous con, especially when the reserves of accessible uranium are already depleted. The planet’s core is useful only so long as it stays at the core, to contemplate bringing the same forces to the surface of this tiny rock in space is certifiable madness.

  2. Eclipse Now says:

    You had a big rant without any backing in science, any numbers, or even any links to typical Greenpeace agit prop. Just nothing. As I answered on the blog, you lack any real *data* backing your anti-nuclear stance. In summary:-

    American LEGISLATION makes nuclear expensive, but other countries are not facing this issue.

    BREEDER reactors will eat the actinides (longer lived nuclear waste), and be massed produced, and China are planning an assembly line GenIV nuke cheaper than coal in just 6 years!

    SOLAR THERMAL: just asserting it is ready for prime time doesn’t make it so. It’s exponentially more expensive than nuclear.

    FINAL NUCLEAR WASTE (fission products) are only radioactive for 300 years: vitrify them into ceramic tablets and drop them in the ocean! Radiation from them will halve every 15 cm, meaning a fatal dose becomes a non-issue with just a few metres of water. But if the ocean is not palatable, just bury them in a bunker for 300 years. Done.

    Sadly, many groups quote Dr James Hansen on the problem of climate change, while ignoring his stated *solution*.
    He says:
    1. Believing in 100% RENEWABLES is like believing in the Easter Bunny or Tooth Fairy. (Yes, he’s aware of all the ‘studies’ that say we can, but still thinks storage is ridiculously expensive and cannot do the job).

    2. The world should build 115 reactors a year*
    (*Note: on a reactors-to-GDP ratio the French *already* beat this build rate back in the 70’s under the Mesmer plan. 115 reactors a year should be easy for the world economy. France did it *faster* with older technology, and today’s nukes can be mass produced on an assembly line.)

  3. Eclipse Now says:

    Oh, and uranium from seawater could run the world for a billion years because it is constantly topped up by erosion.

Leave a Reply

Please log in using one of these methods to post your comment: Logo

You are commenting using your account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s